On a nonlocal elliptic system of p-Kirchhoff-type under Neumann boundary condition
نویسندگان
چکیده
منابع مشابه
On a nonlocal elliptic system of p-Kirchhoff-type under Neumann boundary condition
Ω |∇u| )]p−1 ∆pu = f (u, v)+ ρ1(x) in Ω, − [ M2 (∫ Ω |∇v| )]p−1 ∆pv = g(u, v)+ ρ2(x) in Ω, ∂u ∂η = ∂v ∂η = 0 on ∂Ω, (1.1) where Ω ⊂ R,N ≥ 1, is a bounded smooth domain, 1 < p < N, η is the unit exterior vector on ∂Ω , ∆p is the p-Laplacian operator ∆pu = div(|∇u|p−2∇u) ∗ Corresponding author. E-mail addresses: [email protected], [email protected] (F.J.S.A. Corrêa), [email protected] (R.G. Na...
متن کاملOn nonlocal elliptic system of $p$-Kirchhoff-type in $mathbb{R}^N$
Using Nehari manifold methods and Mountain pass theorem, the existence of nontrivial and radially symmetric solutions for a class of $p$-Kirchhoff-type system are established.
متن کاملon nonlocal elliptic system of $p$-kirchhoff-type in $mathbb{r}^n$
using nehari manifold methods and mountain pass theorem, the existence of nontrivial and radially symmetric solutions for a class of $p$-kirchhoff-type system are established.
متن کاملOn the Existence of Solutions of a Nonlocal Elliptic Equation with a p-Kirchhoff-Type Term
Questions on the existence of positive solutions for the following class of elliptic problems are studied: − M ‖u‖p1,p 1,p Δpu f x, u , in Ω, u 0, on ∂Ω, where Ω ⊂ R is a bounded smooth domain, f : Ω ×R → R and M : R → R, R 0,∞ are given functions. Copyright q 2008 F. J. S. A. Corrêa and R. G. Nascimento. This is an open access article distributed under the Creative Commons Attribution License,...
متن کاملMultiplicity of Solutions for Nonlocal Elliptic System of p, q -Kirchhoff Type
and Applied Analysis 3 where F x, t ∫ t 0 f x, s ds; one positive solutions for 1.7 was obtained. It is well known that condition AR plays an important role for showing the boundedness of Palais-Smale sequences. More recently, Corrêa and Nascimento in 13 studied a nonlocal elliptic system of p-Kirchhoff type
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical and Computer Modelling
سال: 2009
ISSN: 0895-7177
DOI: 10.1016/j.mcm.2008.03.013